Author:
Nam Jaehyeon,Kang Jaeyoung
Abstract
This study classified chaotic time series data, including smooth and nonsmooth problems in a dynamic system, using a convolutional neural network (CNN) and verified it through the Lyapunov exponent. For this, the classical nonlinear differential equation by the Lorenz model was used to analyze a smooth dynamic system. The vibro-impact model was used for the nonsmooth dynamic system. Recurrence is a fundamental property of a dynamic system, and a recurrence plot is a representative method to visualize the recurrence characteristics of reconstructed phase space. Therefore, this study calculated the Lyapunov exponent by parametric analysis and visualized the corresponding recurrence matrix to show the dynamic characteristics as an image. In addition, the dynamic characteristics were classified using the proposed CNN model. The proposed CNN model determined chaos with an accuracy of more than 92%.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献