Numerical Investigations on the Shape Optimization of Stainless-Steel Ring Joint with Machine Learning

Author:

Kim Minsoo,Yi Sarang,Hong SeokmooORCID

Abstract

Since pipes used for water pipes are thin and difficult to fasten using welding or screws, they are fastened by a crimping joint method using a metal ring and a rubber ring. In the conventional crimping joint method, the metal ring and the rubber ring are arranged side by side. However, if water leaks from the rubber ring, there is a problem that the adjacent metal ring is rapidly corroded. In this study, to delay and minimize the corrosion of connected water pipes, we propose a spaced crimping joint method in which metal rings and rubber rings are separated at appropriate intervals. This not only improves the contact performance between the connected water pipes but also minimizes the load applied to the crimping jig during crimping to prevent damage to the jig. For this, finite element analyses were performed for the crimp tool and process analysis, and the design parameters were set as the curling length at the top of the joint, the distance between the metal rings and rubber rings, and the crimp jig radius. Through FEA of 100 cases, data to be trained in machine learning were acquired. After that, training data were trained on a machine learning model and compared with a regression model to verify the model’s performance. If the number of training data is small, the two methods are similar. However, the greater the number of training data, the higher the accuracy predicted by the machine learning model. Finally, the spaced crimping joint to which the derived optimal shape was applied was manufactured, and the maximum pressure and pressure distribution applied during compression were obtained using a pressure film. This is almost similar to the value obtained by finite element analysis under the same conditions, and through this, the validity of the approach proposed in this study was verified.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3