Thermoelastic Investigation of Carbon-Fiber-Reinforced Composites Using a Drop-Weight Impact Test

Author:

Andleeb Zahra,Malik SohailORCID,Abbas Khawaja HassanORCID,Samuelsen Nordli Anders,Antonsen Ståle,Hussain Ghulam,Moatamedi Mojtaba

Abstract

Composite materials are becoming more popular in technological applications due to the significant weight savings and strength offered by these materials compared to metallic materials. In many of these practical situations, the structures suffer from drop-impact loads. Materials and structures significantly change their behavior when submitted to impact loading conditions compared to quasi-static loading. The present work is devoted to investigating the thermal process in carbon-fiber-reinforced polymers (CFRP) subjected to a drop test. A novel drop-weight impact test experiment is performed to evaluate parameters specific to 3D composite materials. A strain gauge rosette and infrared thermography are employed to record the kinematic and thermal fields on the composites’ surfaces. This technique is nondestructive and offers an extensive full-field investigation of a material’s response. The combination of strain and infrared thermography data allows a comprehensive analysis of thermoelastic effects in CFRP when subjected to impacts. The experimental results are validated using numerical analysis by developing a MATLAB® code to analyze whether the coupled heat and wave equation phenomenon exists in a two-dimensional polar coordinate system by discretizing through a forward-time central-space (FTCS) finite-difference method (FDM). The results show the coupling has no significant impact as the waves generated due to impact disappears in 0.015 s. In contrast, heat diffusion happens for over a one-second period. This study demonstrates that the heat equation alone governs the CFRP heat flow process, and the thermoelastic effect is negligible for the specific drop-weight impact load.

Funder

Universitetet i Tromsø

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ice shedding from wind turbines;Multiphysics of Wind Turbines in Extreme Loading Conditions;2024

2. Investigation of the Mechanical Properties of Spur Involute Gearing by Infrared Thermography;Applied Sciences;2023-05-12

3. Multiphysics analysis of contact pressure profile of airless tires as compared to conventional tires;Multiphysics Simulations in Automotive and Aerospace Applications;2021

4. Design optimization and dynamic testing of CFRP for helicopter loading hanger;Multiphysics Simulations in Automotive and Aerospace Applications;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3