Abstract
Peak shaving, demand response, fast fault detection, emissions and costs reduction are some of the main objectives to meet in advanced district heating and cooling (DHC) systems. In order to enhance the operation of infrastructures, challenges such as supply temperature reduction and load uncertainty with the development of algorithms and technologies are growing. Therefore, traditional control strategies and diagnosis approaches cannot achieve these goals. Accordingly, to address these shortcomings, researchers have developed plenty of innovative methods based on their applications and features. The main purpose of this paper is to review recent publications that include both hard and soft computing implementations such as model predictive control and machine learning algorithms with applications also on both fourth and fifth generation district heating and cooling networks. After introducing traditional approaches, the innovative techniques, accomplished results and overview of the main strengths and weaknesses have been discussed together with a description of the main capabilities of some commercial platforms.
Funder
Horizon 2020 Framework Programme
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献