Vibration-Based Thermal Health Monitoring for Face Layer Debonding Detection in Aerospace Sandwich Structures

Author:

Bergmayr ThomasORCID,Kralovec ChristophORCID,Schagerl MartinORCID

Abstract

This paper investigates the potential of a novel vibration-based thermal health monitoring method for continuous and on-board damage detection in fiber reinforced polymer sandwich structures, as typically used in aerospace applications. This novel structural health monitoring method uses the same principles, which are used for vibration-based thermography in combination with the concept of the local defect resonance, as a well known non-destructive testing method (NDT). The use of heavy shakers for applying strong excitation and infrared cameras for observing thermal responses are key hindrances for the application of vibration-based thermography in real-life structures. However, the present study circumvents these limitations by using piezoelectric wafer active sensors as excitation source, which can be permanently bonded on mechanical structures. Additionally, infrared cameras are replaced by surface temperature sensors for observing the thermal responses due to vibrations and damage. This makes continuous and on-board thermal health monitoring possible. The new method is experimentally validated in laboratory experiments by a sandwich structure with face layer debonding as damage scenario. The debonding is realized by introduction of an insert during the manufacturing process of the specimen. The surface temperature sensor results successfully show the temperature increase in the area of the debonding caused by a sinusoidal excitation of the sandwich structure with the PWAS at the first resonance frequency of the damage. This is validated by conventional infrared thermography. These findings demonstrate the potential of the proposed novel thermal health monitoring method for detecting, localizing and estimating sizes of face layer debonding in sandwich structures.

Funder

Christian Doppler Forschungsgesellschaft

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3