Short Term Electric Load Forecasting Based on Data Transformation and Statistical Machine Learning

Author:

Andriopoulos Nikos,Magklaras AristeidisORCID,Birbas Alexios,Papalexopoulos Alex,Valouxis Christos,Daskalaki Sophia,Birbas Michael,Housos Efthymios,Papaioannou George P.

Abstract

The continuous penetration of renewable energy resources (RES) into the energy mix and the transition of the traditional electric grid towards a more intelligent, flexible and interactive system, has brought electrical load forecasting to the foreground of smart grid planning and operation. Predicting the electric load is a challenging task due to its high volatility and uncertainty, either when it refers to the distribution system or to a single household. In this paper, a novel methodology is introduced which leverages the advantages of the state-of-the-art deep learning algorithms and specifically the Convolution Neural Nets (CNN). The main feature of the proposed methodology is the exploitation of the statistical properties of each time series dataset, so as to optimize the hyper-parameters of the neural network and in addition transform the given dataset into a form that allows maximum exploitation of the CNN algorithm’s advantages. The proposed algorithm is compared with the LSTM (Long Short Term Memory) technique which is the state of the art solution for electric load forecasting. The evaluation of the algorithms was conducted by employing three open-source, publicly available datasets. The experimental results show strong evidence of the effectiveness of the proposed methodology.

Funder

H2020 European Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3