Initiation and Propagation Processes of Internal Fatigue Cracks in β Titanium Alloy Based on Fractographic Analysis

Author:

Xue Gaoge,Nakamura Takashi,Fujimura Nao,Takahashi KosukeORCID,Oguma HiroyukiORCID

Abstract

Uniaxial fatigue tests were conducted for a β titanium alloy Ti-22V-4Al up to a very high cycle fatigue (VHCF) regime. The initiation and propagation processes of the internal fatigue cracks were investigated using 3D fractographic analysis. Multiple facets were observed at the crack initiation site. Three facet initiation models were proposed based on the surface appearances and the 3D facet bonding patterns of the multiple facets, and the major facet was determined to be the true crack initiation site. Using the size of the major facet, a Tanaka–Akiniwa model, which can determine the material constants for the Paris law using only conventional fatigue tests, was applied to reveal the propagation process of the internal cracks. A reverse fatigue life prediction was also conducted to evaluate the accuracy of the material constants obtained using the Tanaka–Akiniwa model. When the facet initiation models were applied, the predictions showed less deviation and better agreement than when the facet initiation process was not considered. The findings of this study indicate that the formation of multiple facets in β titanium alloys is sequential rather than simultaneous.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3