Abstract
To study the damage and destruction behavior of small coal pillars in coal mine roadway driving along gobs under long-term in-situ stress and multiple engineering disturbances, an unconfined compression experiment under a discontinuous cyclic load was designed, with the holding time as a variable. An electro-hydraulic servo rock testing machine was used to impose a discontinuous cyclic load on the coal sample and perform a final uniaxial compressive strength test. The changes in pore number and diameter in the coal under stress were monitored by nuclear magnetic resonance analysis. An increase in holding time in the discontinuous cyclic loading resulted in a significant increase in the number and diameter of pores in the coal sample; the coal porosity continued to increase, and the proportion of pores in the coal changed. The proportion of micropores decreased gradually, whereas the proportion of mesopores and macropores (cracks) increased. The degree of internal specimen damage increased with an increase of holding time, which resulted in a gradual decrease in final uniaxial compressive strength. Therefore, under the action of a long-term stress, to improve the bearing capacity of the coal pillar while avoiding gas and water influx into the working face in the goaf, the coal pillar should be reinforced with multi-layer and multi-grain grouting.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献