Deterioration of Coal Microstructure under Discontinuous Cyclic Loading Based on Nuclear Magnetic Resonance

Author:

Xiang ZheORCID,Zhang NongORCID,Xie ZhengzhengORCID,Zhang Chenghao

Abstract

To study the damage and destruction behavior of small coal pillars in coal mine roadway driving along gobs under long-term in-situ stress and multiple engineering disturbances, an unconfined compression experiment under a discontinuous cyclic load was designed, with the holding time as a variable. An electro-hydraulic servo rock testing machine was used to impose a discontinuous cyclic load on the coal sample and perform a final uniaxial compressive strength test. The changes in pore number and diameter in the coal under stress were monitored by nuclear magnetic resonance analysis. An increase in holding time in the discontinuous cyclic loading resulted in a significant increase in the number and diameter of pores in the coal sample; the coal porosity continued to increase, and the proportion of pores in the coal changed. The proportion of micropores decreased gradually, whereas the proportion of mesopores and macropores (cracks) increased. The degree of internal specimen damage increased with an increase of holding time, which resulted in a gradual decrease in final uniaxial compressive strength. Therefore, under the action of a long-term stress, to improve the bearing capacity of the coal pillar while avoiding gas and water influx into the working face in the goaf, the coal pillar should be reinforced with multi-layer and multi-grain grouting.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3