Abstract
The research on hyperspectral anomaly detection algorithms has become a hotspot, driven by a lot of practical applications, such as mineral exploration, environmental monitoring and the national defense force. However, most existing hyperspectral anomaly detectors are designed with a single pixel as unit, which may not make full use of the spatial and spectral information in the hyperspectral image to detect anomalies. In this paper, to fully combine and utilize the spatial and spectral information of hyperspectral images, we propose a novel spectral-based selective searching method for hyperspectral anomaly detection, which firstly combines adjacent pixels with the same spectral characteristics into regions with adaptive shape and size and then treats those regions as one processing unit. Then, by fusing adjacent regions with similar spectral characteristics, the anomaly can be successfully distinguished from background. Two standard hyperspectral datasets are introduced to verify the feasibility and effectiveness of the proposed method. The detection performance is depicted by intuitive detection images, receiver operating characteristic curves and area under curve values. Comparing the results of the proposed method with five popular and state-of-the-art methods proves that the spectral-based selective searching method is an accurate and effective method to detect anomalies.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献