A Case Study on the Design and Implementation of a Platform for Hand Rehabilitation

Author:

Kosar TomažORCID,Lu Zhenli,Mernik MarjanORCID,Horvat Marjan,Črepinšek MatejORCID

Abstract

Rehabilitation aids help people with temporal or permanent disabilities during the rehabilitation process. However, these solutions are usually expensive and, consequently, inaccessible outside of professional medical institutions. Rapid advances in software development, Internet of Things (IoT), robotics, and additive manufacturing open up a way to affordable rehabilitation solutions, even to the general population. Imagine a rehabilitation aid constructed from accessible software and hardware with local production. Many obstacles exist to using such technology, starting with the development of unified software for custom-made devices. In this paper, we address open issues in designing rehabilitation aids by proposing an extensive rehabilitation platform. To demonstrate our concept, we developed a unique platform, RehabHand. The main idea is to use domain-specific language and code generation techniques to enable loosely coupled software and hardware solutions. The main advantage of such separation is support for modular and a higher abstraction level by enabling therapists to write rehabilitation exercises in natural, domain-specific terminology and share them with patients. The same platform provides a hardware-independent part that facilitates the integration of new rehabilitation devices. Experience in implementing RehabHand with three different rehabilitation devices confirms that such rehabilitation technology can be developed, and shows that implementing a hardware-independent rehabilitation platform might not be as challenging as expected.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3