Spatial Signal Analysis Based on Wave-Spectral Fractal Scaling: A Case of Urban Street Networks

Author:

Chen YanguangORCID,Long YuqingORCID

Abstract

A number of mathematical methods have been developed to make temporal signal analyses based on time series. However, no effective method for spatial signal analysis, which are as important as temporal signal analyses for geographical systems, has been devised. Nonstationary spatial and temporal processes are associated with nonlinearity, and cannot be effectively analyzed by conventional analytical approaches. Fractal theory provides a powerful tool for exploring spatial complexity and is helpful for spatio-temporal signal analysis. This paper is devoted to developing an approach for analyzing spatial signals of geographical systems by means of wave-spectrum scaling. The traffic networks of 10 Chinese cities are taken as cases for positive studies. Fast Fourier transform (FFT) and ordinary least squares (OLS) regression methods are employed to calculate spectral exponents. The results show that the wave-spectrum density distribution of all these urban traffic networks follows scaling law, and that the spectral scaling exponents can be converted into fractal dimension values. Using the fractal parameters, we can make spatial analyses for the geographical signals. The wave-spectrum scaling methods can be applied to both self-similar fractal signals and self-affine fractal signals in the geographical world. This study has implications for the further development of fractal-based spatiotemporal signal analysis in the future.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference49 articles.

1. A Mathematical Theory of Communication

2. Entropy and Fractal Antennas

3. Chaos and Order: The Complex Structure of Living Systems;Cramer,1993

4. Approximate entropy as a measure of system complexity.

5. Noise-free coding of combinatorial sources, Hausdorff dimension and Kolmogorov complexity;Ryabko;Probl. Peredachi Inf.,1986

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3