Study on the Compatibility of Eco-Friendly Insulating Gas C5F10O/N2 and C5F10O/Air with Copper Materials in Gas-Insulated Switchgears

Author:

Li Yalong,Zhang XiaoxingORCID,Xia Yalong,Li YiORCID,Wei Zhuo,Wang YiORCID,Xiao Song

Abstract

Sulfur hexafluoride (SF6) is widely used in the power industry because of its excellent insulation and arc extinguishing performance. However, the high greenhouse effect of this material is being restricted by many countries around the world, thereby discouraging its usage. As a potential alternative to SF6, the compatibility of C5F10O with conductive copper materials used in electrical equipment is of great significance in ensuring the safe and stable operation of environmentally friendly gas-insulated equipment. In this paper, the interaction among C5F10O/N2, C5F10O/air gas mixture, and copper was studied via experiments and simulations. When the C5F10O/N2 (or air) gas mixture comes in contact with copper at the gas–solid interface, a small portion of C5F10O is decomposed to form C3F6 (or C3F6 and C3F6O) at high temperatures. Meanwhile, at low temperatures (120 °C), the C5F10O/air gas mixture becomes more compatible with copper than with the C5F10O/N2 gas mixture. When the experiment temperatures range between 170 °C and 220 °C, the compatibility of the C5F10O/air gas mixture with copper is significantly inferior to its compatibility with copper. Under high temperatures, the C5F10O/air gas mixture shows severe corrosion on the copper surface due to the presence of O2, forms a thick cubic grain, and emits irritating gases. The simulations show that the carbonyl group in C5F10O is chemically active and can be easily adsorbed on the copper surface. An anti-corrosion treatment must be performed on copper materials in manufacturing equipment. The findings provide an important reference for the application of C5F10O gas mixture.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3