Abstract
Here, we present a critical review of recent developments in Casimir physics motivated by discoveries of novel materials. Specifically, topologically nontrivial properties of the graphene family, Chern and topological insulators, and Weyl semimetals have diverse manifestations in the distance dependence, presence of fundamental constants, magnitude, and sign of the Casimir interaction. Limited studies of the role of nonlinear optical properties in the interaction are also reviewed. We show that, since many new materials have greatly enhanced the nonlinear optical response, new efficient pathways for investigation of the characteristic regimes of the Casimir force need to be explored, which are expected to lead to new discoveries. Recent progress in the dynamical Casimir effect is also reviewed and we argue that nonlinear media can open up new directions in this field as well.
Funder
U.S. Department of Energy
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献