A Novel Wearable Foot and Ankle Monitoring System for the Assessment of Gait Biomechanics

Author:

Faragó PaulORCID,Grama LăcrimioaraORCID,Farago Monica-Adriana,Hintea Sorin

Abstract

Walking is the most basic form of human activity for achieving mobility. As an essential function of the human body, the examination of walking is directed towards the assessment of body mechanics in posture and during movement. This work proposes a wearable smart system for the monitoring and objective evaluation of foot biomechanics during gait. The proposed solution assumes the cross-correlation of the plantar pressure with lower-limb muscular activity, throughout the stance phase of walking. Plantar pressure is acquired with an array of resistive pressure sensors deployed onto a shoe insole along the center of gravity progression line. Lower-limb muscular activity is determined from the electromyogram of the tibialis anterior and gastrocnemius lower limb muscles respectively. Under this scenario, physiological gait assumes the interdependency of plantar pressure on the heel area with activation of the tibialis anterior, as well as plantar pressure on the metatarsal arch/toe area with activation of the gastrocnemius. As such, assessment of gait physiology is performed by comparison of a gait map, formulated based on the footprint–lower-limb muscle cross-correlation results, to a reference gait template. A laboratory proof of concept validates the proposed solution in a test scenario which assumes a normal walking and two pathological walking patterns.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

1. A Novel Smart-Shoe Architecture for Podiatric Monitoring

2. Muscles: Testing and Testing and Function with Posture and Pain;Kendal,2005

3. Kinetotherapy Evaluation Methods and Techniques (Original in Romanian: Metode și Tehnici de Evaluare în Kinetoterapie);Farago,2008

4. Comparison of Plantar Pressure Distribution between Different Speed and Incline During Treadmill Jogging;Ho;J. Sports Sci. Med.,2010

5. Identification of Foot Pathologies Based on Plantar Pressure Asymmetry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3