Abstract
This paper uses a neural network approach transformer of taxi driver behavior to predict the next destination with geographical factors. The problem of predicting the next destination is a well-studied application of human mobility, for reducing traffic congestion and optimizing the electronic dispatching system’s performance. According to the Intelligent Transport System (ITS), this kind of task is usually modeled as a multi-class problem. We propose the novel model Deep Wide Spatial-Temporal-Based Transformer Networks (DWSTTNs). In our approach, the encoder and decoder are the transformer’s primary units; with the help of Location-Based Social Networks (LBSN), we encode the geographical information based on visited semantic locations. In particular, we trained our model for the exact longitude and latitude coordinates to predict the next destination. The benefit in the real world of this kind of research is to reduce the customer waiting time for a ride and driver waiting time to pick up a customer. Taxi companies can also optimize their management to improve their company’s service, while urban transport planner can use this information to better plan the urban traffic. We conducted extensive experiments on two real-word datasets, Porto and Manhattan, and the performance was improved compared to the previous models.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献