Impact of Neurons on Patient-Derived Cardiomyocytes Using Organ-On-A-Chip and iPSC Biotechnologies

Author:

Bernardin Albin A.,Colombani Sarah,Rousselot Antoine,Andry Virginie,Goumon YannickORCID,Delanoë-Ayari Hélène,Pasqualin CômeORCID,Brugg Bernard,Jacotot Etienne D.ORCID,Pasquié Jean-LucORCID,Lacampagne AlainORCID,Meli Albano C.ORCID

Abstract

In the heart, cardiac function is regulated by the autonomic nervous system (ANS) that extends through the myocardium and establishes junctions at the sinus node and ventricular levels. Thus, an increase or decrease in neuronal activity acutely affects myocardial function and chronically affects its structure through remodeling processes. The neuro–cardiac junction (NCJ), which is the major structure of this system, is poorly understood and only a few cell models allow us to study it. Here, we present an innovant neuro–cardiac organ-on-chip model to study this structure to better understand the mechanisms involved in the establishment of NCJ. To create such a system, we used microfluidic devices composed of two separate cell culture compartments interconnected by asymmetric microchannels. Rat PC12 cells were differentiated to recapitulate the characteristics of sympathetic neurons, and cultivated with cardiomyocytes derived from human induced pluripotent stem cells (hiPSC). We confirmed the presence of a specialized structure between the two cell types that allows neuromodulation and observed that the neuronal stimulation impacts the excitation–contraction coupling properties including the intracellular calcium handling. Finally, we also co-cultivated human neurons (hiPSC-NRs) with human cardiomyocytes (hiPSC-CMs), both obtained from the same hiPSC line. Hence, we have developed a neuro–cardiac compartmentalized in vitro model system that allows us to recapitulate the structural and functional properties of the neuro–cardiac junction and that can also be used to better understand the interaction between the heart and brain in humans, as well as to evaluate the impact of drugs on a reconstructed human neuro–cardiac system.

Funder

Fondation Coeur et Recherche

Institut National pour la Santé et la Recherche Médicale

MUSE CIBSEEA

ANR MUSAGE

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3