Abstract
Alzheimer’s disease (AD) is a common neurodegenerative disorder with progressive cognitive impairment in the elderly. Beta-amyloid (Aβ) formation and its accumulation in the brain constitute one of the pathological hallmarks of AD. Until now, how to modulate Aβ formation in hippocampal neurons remains a big challenge. Herein, we investigated whether the exosomal transfer of microRNA (miR) relates to amyloid pathology in the recipient neuron cells. We isolated circulating small extracellular vesicles (sEVs) from AD patients and healthy controls, determined the miR-342-5p level in the sEVs by RT-PCR, and evaluated its diagnostic performance in AD. Then, we took advantage of biomolecular assays to estimate the role of miR-342-5p in modulating the amyloid pathway, including amyloid precursor protein (APP), beta-site APP cleaving enzyme 1 (BACE1), and Aβ42. Furthermore, we subjected HT22 cells to the sEVs from the hippocampal tissues of transgenic APP mice (Exo-APP) or C57BL/6 littermates (Exo-CTL), and the Exo-APP enriched with miR-342-5p mimics or the control to assess the effect of the sEVs’ delivery of miR-342-5p on Aβ formation. We observed a lower level of miR-342-5p in the circulating sEVs from AD patients compared with healthy controls. MiR-342-5p participated in Aβ formation by modulating BACE1 expression, specifically binding its 3′-untranslated region (UTR) sequence. Exo-APP distinctly promoted Aβ42 formation in the recipient cells compared to Exo-CTL. Intriguingly, miR-342-5p enrichment in Exo-APP ameliorated amyloid pathology in the recipient cells. Our study indicated that miR-342-5p was dysregulated in human circulating sEVs from AD patients; sEV transfer of miR-342-5p ameliorates Aβ formation by modulating BACE1 expression. These findings highlight the promising potential of exosomal miRNAs in AD clinical therapy.
Funder
Shanghai Municipal Health Commission
Shanghai Jinshan District Health Commission
National Natural Science Foundation of China
Natural Science Foundation of Shanghai Municipal Science and Technology Commission
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献