Abstract
Generation of motor neurons (MNs) from human-induced pluripotent stem cells (hiPSCs) overcomes the limited access to human brain tissues and provides an unprecedent approach for modeling MN-related diseases. In this review, we discuss the recent progression in understanding the regulatory mechanisms of MN differentiation and their applications in the generation of MNs from hiPSCs, with a particular focus on two approaches: induction by small molecules and induction by lentiviral delivery of transcription factors. At each induction stage, different culture media and supplements, typical growth conditions and cellular morphology, and specific markers for validation of cell identity and quality control are specifically discussed. Both approaches can generate functional MNs. Currently, the major challenges in modeling neurological diseases using iPSC-derived neurons are: obtaining neurons with high purity and yield; long-term neuron culture to reach full maturation; and how to culture neurons more physiologically to maximize relevance to in vivo conditions.
Funder
National Institute of Health (NIH) National Institute of Neurological Disorders and Stroke
Department of Defense (DoD) Peer Reviewed Medical Research Program (PRMRP) Discovery Award
LSU Health Shreveport Center for Brain Health (CBH) Grant in Aid
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献