Abstract
Background: a significant percentage of methamphetamine (MA) dependent patients develop psychosis. The associations between oxidative pathways and MA-induced psychosis (MIP) are not well delineated. Objective: the aim of this study is to delineate whether acute MA intoxication in MA dependent patients is accompanied by increased nitro-oxidative stress and whether the latter is associated with MIP. Method: we recruited 30 healthy younger males and 60 acutely intoxicated males with MA dependence and assessed severity of MA use and dependence and psychotic symptoms during intoxication, and serum oxidative toxicity (OSTOX) biomarkers including oxidized high (oxHDL) and low (oxLDL)-density lipoprotein, myeloperoxidase (MPO), malondialdehyde (MDA), and nitric oxide (NO), and antioxidant defenses (ANTIOX) including HDL-cholesterol, zinc, glutathione peroxidase (GPx), total antioxidant capacity (TAC), and catalase-1. Results: a large part (50%, n = 30) of patients with MA dependence could be allocated to a cluster characterized by high psychosis ratings including delusions, suspiciousness, conceptual disorganization and difficulties abstract thinking and an increased OSTOX/ANTIOX ratio. Partial Least Squares analysis showed that 29.9% of the variance in MIP severity (a first factor extracted from psychosis, hostility, excitation, mannerism, and formal thought disorder scores) was explained by HDL, TAC and zinc (all inversely) and oxLDL (positively). MA dependence and dosing explained together 44.7% of the variance in the OSTOX/ANTIOX ratio. Conclusions: MA dependence and intoxication are associated with increased oxidative stress and lowered antioxidant defenses, both of which increase risk of MIP during acute intoxication. MA dependence is accompanied by increased atherogenicity due to lowered HDL and increased oxLDL and oxHDL.