Upregulation of Nav1.6 Mediated by the p38 MAPK Pathway in the Dorsal Root Ganglia Contributes to Cancer-Induced Bone Pain in Rats

Author:

Lin Mingxue,Chen Xiaohui,Wu Shuyan,Chen Pinzhong,Wan Haiyang,Ma Simeng,Lin Na,Liao Yanling,Zheng Ting,Jiang Jundan,Zheng Xiaochun

Abstract

Cancer-induced bone pain (CIBP) occurs frequently among advanced cancer patients. Voltage-gated sodium channels (VGSCs) have been associated with chronic pain, but how VGSCs function in CIBP is poorly understood. Here, we aimed to investigate the specific role of VGSCs in the dorsal root ganglia (DRGs) in CIBP. A CIBP rat model was generated by the intratibial inoculation of MRMT-1 breast carcinoma cells. Transcriptome sequencing was conducted to assess the gene expression profiles. The expression levels of key genes and differentiated genes related to activated pathways were measured by Western blotting and qPCR. We implanted a catheter intrathecally for the administration of lentivirus and drugs. Then, the changes in the mechanical withdrawal threshold (MWT) were measured. We identified 149 differentially expressed mRNAs (DEmRNAs) in the DRGs of CIBP model rats. The expression of Nav1.6, which was among these DEmRNAs, was significantly upregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEmRNAs showed that they were mainly enriched in the mitogen-activated protein kinase (MAPK) pathway. The decrease in MWT induced by bone cancer was attenuated by Nav1.6 knockdown. Western blot analysis revealed that a p38 inhibitor decreased the expression of Nav1.6 and attenuated pain behavior. Our study shows that the upregulation of Nav1.6 expression by p38 MAPK in the DRGs of rats contributes to CIBP.

Funder

the National Natural Science Foundation of China

the Joint Funds for the Innovation of Science and Technology

the Medical Innovation Project of Fujian Province

the Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3