Abstract
Currently, exosomes derived from Cancer-associated fibroblast (CAF) have reportedly been involved in regulating hepatocellular carcinoma (HCC) tumour microenvironment (TME). LIM domain and actin binding 1 (LIMA1) is an actin-binding protein that is involved in controlling the biological behaviour and progression of specific solid tumours. We aimed to determine the effect of LIMA1 and exosome-associated miR-20a-5p in HCC development. LIMA1 and miR-20a-5p expression levels were examined by real-time quantitative PCR (qRT-PCR), western blotting or immunohistochemistry (IHC). Functional experiments, including Cell Counting Kit-8 (CCK-8), 5-ethynyl-2′-deoxyuridine (EdU) assays, colony formation assays, wound healing assays, and Transwell invasion assays, were performed to investigate the effect of LIMA1 and miR-20a-5p. A dual-luciferase reporter gene assay was performed to confirm the interaction of miR-20a-5p and LIMA1. Exosomes were characterised by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting. We noted that LIMA1 was downregulated in human HCC tissues and cells and remarkably correlated with overall survival (OS) and recurrence-free survival (RFS). LIMA1 overexpression suppressed HCC cell proliferation and metastasis in vitro and in vivo, while LIMA1 knockdown had the opposite effects. A mechanistic investigation showed that LIMA1 inhibited the Wnt/β-catenin signalling pathway by binding to BMI1 and inducing its destabilisation. Additionally, we found that LIMA1 expression in HCC cells could be suppressed by transferring CAF-derived exosomes harbouring oncogenic miR-20a-5p. In summary, LIMA1 is a tumour suppressor that inhibits the Wnt/β-catenin signalling pathway and is downregulated by CAF-derived exosomes carrying oncogenic miR-20a-5p in HCC.
Funder
The Key Research and Development Program of Anhui Province
The Key Generic Technology Research and Development and Major Scientific and Technological Achievements Engineering Projects of Hefei
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献