Abstract
Background: Neurogenic bladder (NB) patients exhibit varying degrees of bladder fibrosis, and the thickening and hardening of the bladder wall induced by fibrosis will further affect bladder function and cause renal failure. Our study aimed to investigate the mechanism of bladder fibrosis caused by a spinal cord injury (SCI). Methods: NB rat models were created by cutting the bilateral lumbar 6 (L6) and sacral 1 (S1) spinal nerves. RNA-seq, Western blotting, immunofluorescence, cell viability and ELISA were performed to assess the inflammation and fibrosis levels. Results: The rats showed bladder dysfunction, upper urinary tract damage and bladder fibrosis after SCI. RNA-seq results indicated that hypoxia, EMT and pyroptosis might be involved in bladder fibrosis induced by SCI. Subsequent Western blot, ELISA and cell viability assays and immunofluorescence of bladder tissue confirmed the RNA-seq findings. Hypoxic exposure increased the expression of HIF-1α and induced EMT and pyroptosis in bladder epithelial cells. Furthermore, HIF-1α knockdown rescued hypoxia-induced pyroptosis, EMT and fibrosis. Conclusion: EMT and pyroptosis were involved in the development of SCI-induced bladder fibrosis via the HIF-1α pathway. Inhibition of the HIF-1α pathway may serve as a potential target to alleviate bladder fibrosis caused by SCI.
Funder
National Clinical Research Center for Child Health, General Program of Clinical Research
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献