Natural Cross-Kingdom Spread of Apple Scar Skin Viroid from Apple Trees to Fungi

Author:

Tian Mengyuan,Wei Shuang,Bian Ruiling,Luo Jingxian,Khan Haris AhmedORCID,Tai Huanhuan,Kondo Hideki,Hadidi Ahmed,Andika Ida Bagus,Sun Liying

Abstract

Viroids are the smallest known infectious agents that are thought to only infect plants. Here, we reveal that several species of plant pathogenic fungi that were isolated from apple trees infected with apple scar skin viroid (ASSVd) carried ASSVd naturally. This finding indicates the spread of viroids to fungi under natural conditions and further suggests the possible existence of mycoviroids in nature. A total of 117 fungal isolates were isolated from ASSVd-infected apple trees, with the majority (85.5%) being an ascomycete Alternaria alternata and the remaining isolates being other plant-pathogenic or -endophytic fungi. Out of the examined samples, viroids were detected in 81 isolates (69.2%) including A. alternata as well as other fungal species. The phenotypic comparison of ASSVd-free specimens developed by single-spore isolation and ASSVd-infected fungal isogenic lines showed that ASSVd affected the growth and pathogenicity of certain fungal species. ASSVd confers hypovirulence on ascomycete Epicoccum nigrum. The mycobiome analysis of apple tree-associated fungi showed that ASSVd infection did not generally affect the diversity and structure of fungal communities but specifically increased the abundance of Alternaria species. Taken together, these data reveal the occurrence of the natural spread of viroids to plants; additionally, as an integral component of the ecosystem, viroids may affect the abundance of certain fungal species in plants. Moreover, this study provides further evidence that viroid infection could induce symptoms in certain filamentous fungi.

Funder

National Natural Science Foundation of China

program of introducing Talents of Innovative discipline to Universities

Publisher

MDPI AG

Subject

General Medicine

Reference64 articles.

1. Circular RNAs: Relics of precellular evolution?;Proc. Natl. Acad. Sci. USA,1989

2. Current status of viroid taxonomy;Arch. Virol.,2014

3. Circular RNAs with hammerhead ribozymes encoded in eukaryotic genomes: The enemy at home;Proc. Natl. Acad. Sci. USA,2017

4. Viroids;Cell. Microbiol.,2008

5. Hadidi, A., Flores, R., Randles, J.W., and Palukaitis, P. (2017). Viroids and Satellites, Academic Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3