A Disturbed Siderophore Transport Inhibits Myxobacterial Predation

Author:

Dong YijieORCID,Dong Honghong,Feng Zengwei,Wang Xing,Yao QingORCID,Zhu HonghuiORCID

Abstract

Background: Understanding the intrinsic mechanisms of bacterial competition is a fundamental question. Iron is an essential trace nutrient that bacteria compete for. The most prevalent manner for iron scavenging is through the secretion of siderophores. Although tremendous efforts have focused on elucidating the molecular mechanisms of siderophores biosynthesis, export, uptake, and regulation of siderophores, the ecological aspects of siderophore-mediated competition are not well understood. Methods: We performed predation and bacterial competition assays to investigate the function of siderophore transport on myxobacterial predation. Results: Deletion of msuB, which encodes an iron chelate uptake ABC transporter family permease subunit, led to a reduction in myxobacterial predation and intracellular iron, but iron deficiency was not the predominant reason for the decrease in the predation ability of the ∆msuB mutant. We further confirmed that obstruction of siderophore transport decreased myxobacterial predation by investigating the function of a non-ribosomal peptide synthetase for siderophore biosynthesis, a TonB-dependent receptor, and a siderophore binding protein in M. xanthus. Our results showed that the obstruction of siderophores transport decreased myxobacterial predation ability through the downregulation of lytic enzyme genes, especially outer membrane vesicle (OMV)-specific proteins. Conclusions: This work provides insight into the mechanism of siderophore-mediated competition in myxobacteria.

Funder

the Guangdong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

the GDAS’ Project of Science and Technology Development

Guangdong Special Support Program

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Myxococcus xanthus predation: an updated overview;Frontiers in Microbiology;2024-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3