CAR Triggered Release of Type-1 Interferon Limits CAR T-Cell Activities by an Artificial Negative Autocrine Loop

Author:

Harrer Dennis Christoph,Schenkel Charlotte,Bezler ValerieORCID,Kaljanac Marcell,Hartley Jordan,Barden Markus,Pan Hong,Holzinger Astrid,Herr Wolfgang,Abken HinrichORCID

Abstract

The advent of chimeric antigen receptor (CAR) T cells expedited the field of cancer immunotherapy enabling durable remissions in patients with refractory hematological malignancies. T cells redirected for universal cytokine-mediated killing (TRUCKs), commonly referred to as “fourth generation” CAR T-cells, are designed to release engineered payloads upon CAR-induced T-cell activation. Building on the TRUCK technology, we aimed to generate CAR T-cells with a CAR-inducible artificial, self-limiting autocrine loop. To this end, we engineered CAR T-cells with CAR triggered secretion of type-1 interferons (IFNs). At baseline, IFNα and IFNβ CAR T-cells showed similar capacities in cytotoxicity and cytokine secretion compared to conventional CAR T-cells. However, under “stress” conditions of repetitive rounds of antigen stimulation using BxPC-3 pancreas carcinoma cells as targets, anti-tumor activity faded in later rounds while being fully active in destructing carcinoma cells during first rounds of stimulation. Mechanistically, the decline in activity was primarily based on type-1 IFN augmented CAR T-cell apoptosis, which was far less the case for CAR T-cells without IFN release. Such autocrine self-limiting loops can be used for applications where transient CAR T-cell activity and persistence upon target recognition is desired to avoid lasting toxicities.

Funder

Deutsche Forschungsgemeinschaft

Else-Kröner Fresenius Foundation

university of Regensburg intramural

Publisher

MDPI AG

Subject

General Medicine

Reference41 articles.

1. Therapeutic T cell engineering;Sadelain;Nature,2017

2. Chimeric Antigen Receptor Therapy;June;N. Engl. J. Med.,2018

3. Treatment with Living Drugs: Pharmaceutical Aspects of CAR T Cells;Holzinger;Pharmacology,2022

4. Advances and Challenges of CAR T Cells in Clinical Trials;Holzinger;Recent Results Cancer Res.,2020

5. Driving cars to the clinic for solid tumors;Castellarin;Gene Ther.,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3