Comparison of the Immune Response in Vaccinated People Positive and Negative to SARS-CoV-2 Employing FTIR Spectroscopy

Author:

Vazquez-Zapien Gustavo JesusORCID,Martinez-Cuazitl AdrianaORCID,Sanchez-Brito MiguelORCID,Delgado-Macuil Raul JacoboORCID,Atriano-Colorado Consuelo,Garibay-Gonzalez FranciscoORCID,Sanchez-Monroy VirginiaORCID,Lopez-Reyes AlbertoORCID,Mata-Miranda Monica MaribelORCID

Abstract

Various immunopathological events characterize the systemic acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Moreover, it has been reported that coronavirus disease 2019 (COVID-19) vaccination and infection by SARS-CoV-2 induce humoral immunity mediated by B-cell-derived antibodies and cellular immunity mediated by T cells and memory B cells. Immunoglobulins, cytokines, and chemokines play an important role in shaping immunity in response to infection and vaccination. Furthermore, different vaccines have been developed to prevent COVID-19. Therefore, this research aimed to analyze and compare Fourier-transform infrared (FTIR) spectra of vaccinated people with a positive (V-COVID-19 group) or negative (V-Healthy group) real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) test, evaluating the immunoglobulin and cytokine content as an immunological response through FTIR spectroscopy. Most individuals that integrated the V-Healthy group (88.1%) were asymptomatic; on the contrary, only 28% of the V-COVID-19 group was asymptomatic. Likewise, 68% of the V-COVID-19 group had at least one coexisting illness. Regarding the immunological response analyzed through FTIR spectroscopy, the V-COVID-19 group showed a greater immunoglobulins G, A, and M (IgG, IgA, and IgM) content, as well as the analyzed cytokines interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-ɑ), and interleukins 1β, 6, and 10 (IL-1β, IL-6, and IL-10). Therefore, we can state that it was possible to detect biochemical changes through FTIR spectroscopy associated with COVID-19 immune response in vaccinated people.

Funder

(SEDENA) budgetary program

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3