Developmental Potency and Metabolic Traits of Extended Pluripotency Are Faithfully Transferred to Somatic Cells via Cell Fusion-Induced Reprogramming

Author:

Song Jae-Hoon,Choi JoonhyukORCID,Hong Yean-Ju,La Hyeonwoo,Hong Tae-KyungORCID,Hong Kwonho,Do Jeong-TaeORCID

Abstract

As a novel cell type from eight-cell-stage embryos, extended pluripotent stem cells (EPSCs) are known for diverse differentiation potency in both extraembryonic and embryonic lineages, suggesting new possibilities as a developmental research model. Although various features of EPSCs have been defined, their ability to directly transfer extended pluripotency to differentiated somatic cells by cell fusion remains to be elucidated. Here, we derived EPSCs from eight-cell mouse embryos and confirmed their extended pluripotency at the molecular level and extraembryonic differentiation ability. Then, they were fused with OG2+/− ROSA+/− neural stem cells (NSCs) by the polyethylene-glycol (PEG)-mediated method and further analyzed. The resulting fused hybrid cells exhibited pluripotential markers with upregulated EPSC-specific gene expression. Furthermore, the hybrid cells contributed to the extraembryonic and embryonic lineages in vivo and in vitro. RNA sequencing analysis confirmed that the hybrid cells showed distinct global expression patterns resembling EPSCs without parental expression of NSC markers, indicating the complete acquisition of extended pluripotency and the erasure of the somatic memory of NSCs. Furthermore, ultrastructural observation and metabolic analysis confirmed that the hybrid cells rearranged the mitochondrial morphology and bivalent metabolic profile to those of EPSCs. In conclusion, the extended pluripotency of EPSCs could be transferred to somatic cells through fusion-induced reprogramming.

Funder

National Research Foundation of Korea

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3