Resilience Analysis for Double Spending via Sequential Decision Optimization

Author:

Hinz Juri

Abstract

Recently, diverse concepts originating from blockchain ideas have gained increasing popularity. One of the innovations in this technology is the use of the proof-of-work (PoW) concept for reaching a consensus within a distributed network of autonomous computer nodes. This goal has been achieved by design of PoW-based protocols with a built-in equilibrium property: If all participants operate honestly then the best strategy of any agent is also to follow the same protocol. However, there are concerns about the stability of such systems. In this context, the analysis of attack vectors, which represent potentially successful deviations from the honest behavior, turns out to be the most crucial question. Naturally, stability of a blockchain system can be assessed only by determining its most vulnerable components. For this reason, knowing the most successful attacks, regardless of their sophistication level, is inevitable for a reliable stability analysis. In this work, we focus entirely on blockchain systems which are based on the proof-of-work consensus protocols, referred to as PoW-based systems, and consider planning and launching an attack on such system as an optimal sequential decision-making problem under uncertainty. With our results, we suggest a quantitative approach to decide whether a given PoW-based system is vulnerable with respect to this type of attack, which can help assessing and improving its stability.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Reference26 articles.

1. Mastering Bitcoin: Programming the Open Blockchain, 2nd ed;Antonopoulos,2017

2. A Peer-to-Peer Electronic Cash System https://git.dhimmel.com/bitcoin-whitepaper/

3. Analysis of Hashrate-Based Double Spending;Rosenfeld;arXiv,2014

4. DOUBLE SPEND RACES

5. Bitcoin blockchain dynamics: The selfish-mine strategy in the presence of propagation delay

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3