A Novel Approach to Enhance the Energy Efficiency of a NOMA Network

Author:

Rajab Husam1ORCID,Ren Baolin1,Cinkler Tibor1

Affiliation:

1. Faculty of Electrical Engineering and Informatics, Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Magyar Tudósok Krt.2, 1117 Budapest, Hungary

Abstract

Spectral efficiency is crucial for implementing 5G cellular networks and beyond. Non-orthogonal multiple access (NOMA) is a promising scheme to enhance efficiency. This paper introduces two improvements that will further enhance the channel capacity using the NOMA algorithm. We first introduce a novel algorithm, the User Sub-Channel Fair Matching Algorithm (USFMA), by applying a new sub-channel sorting and compensations scheme and then benefiting from the well-known Hungarian algorithm to allocate users to each sub-channel in a way that guarantees an optimum overall system performance. Then, for per sub-channel power allocation, we convert the non-convex objective function into a convex sub-problem using the concave–convex procedure (CCP) by converting the objective function into convex sub-problems and using the successive convex approximation to solve the convex sub-problems to find effective sub-optimal solutions. We have built a MATLAB simulation cellular environment to evaluate and compare the system performance with other known schemes. The results are promising and showed significant improvements compared to the other capacity and energy efficiency schemes.

Funder

FWO

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Reference49 articles.

1. Analysis of non-orthogonal multiple access for 5G;Wang;China Commun.,2016

2. Non-orthogonal multiple access (NOMA) for 5G networks;Kizilirmak;Towards 5G Wirel. Netw. Phys. Layer Perspect.,2016

3. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges;Islam;IEEE Commun. Surv. Tutor.,2016

4. Joint power and time allocation for NOMA–MEC offloading;Ding;IEEE Trans. Veh. Technol.,2019

5. Social networking and caching aided collaborative computing for the Internet of Things;Ai;IEEE Commun. Mag.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3