Antenna-on-Chip for Millimeter Wave Applications Using CMOS Process Technology

Author:

Chung Ming-An1ORCID,Chen Yu-Hsun1,Meiy Ing-Peng1

Affiliation:

1. Department of Electronic Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

Abstract

In this paper, a monopole patch antenna is designed, and the structure of the antenna is analyzed. The manufacturing process adopts TSMC 0.18 μm CMOS process technology. An artificial magnetic conductor (AMC) on the M1 layer is proposed in this paper to increase the radiation gain and reduce the reflection coefficient (S11) magnitude for impedance matching and antenna performance. This method can make up for the radiation efficiency and benefits of the antenna-on-chip that are affected by the high dielectric constant and low resistivity of the silicon substrate of the CMOS process. The antenna designed in this paper obtains a simulated bandwidth of 37.5 GHz to 69.5 GHz using the Electromagnetic Simulation Software, and the fractional bandwidth of the design is 60%. Among them, 62 GHz shows a maximum gain value of −2.64 dBi. Actual measurements have confirmed that the reflection coefficient of the antenna on the chip proposed in this paper is the same as the simulation trend, and a wider bandwidth is obtained from 20.9 GHz to 67 GHz, with a fractional bandwidth of 104.89%. This bandwidth covers millimeter wave 28 GHz, 38 GHz, and 60 GHz application frequencies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Composite Matrix of Mm-Wave Antenna Arrays for 5G Applications;PRZEGLĄD ELEKTROTECHNICZNY;2024-02-19

2. Chip Antenna with Vivaldi-Like Structure for W-Band Design;2024 26th International Conference on Advanced Communications Technology (ICACT);2024-02-04

3. Designed on 0.18 μm CMOS Process Small Size Broadband Millimeter Wave Chip Antenna;Inventions;2023-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3