Feasibility of Ultra-Wideband Channels at Millimeter Wavelengths Faded by Rain in GeoSurf Satellite Constellations

Author:

Matricciani Emilio1ORCID,Magarini Maurizio1ORCID,Riva Carlo1ORCID

Affiliation:

1. Dipartimento di Elettronica, Bioingegneria e Informazione, Politecnico di Milano, 20133 Milan, Italy

Abstract

We have studied the interference caused by amplitude and phase distortions induced by rain in ultra-wideband communication systems designed for using amplitude modulation in GeoSurf future satellite constellations. The results concern radio links simulated with the synthetic storm technique at Spino d’Adda (Italy), Madrid (Spain) and Tampa (Florida), which are sites located in different climatic regions. The conclusions are (a) the three sites, although in different climatic zones, are practically indistinguishable; (b) the channel signal-to-noise ratio can be increased or decreased by interference with equal probability. Channel theoretical capacity loss, even in the worst case, is very limited and rain, therefore, does not cause significant linear distortions in ultra-wideband channels at millimeter waves; therefore, these channels could be used at millimeter waves.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3