Affiliation:
1. Department of Electrical and Computer Engineering, University of Kashan, Kashan 8731753153, Iran
2. Institute for Data Science, Cloud Computing and IT Security, Furtwangen University of Applied Sciences, 78120 Furtwangen im Schwarzwald, Germany
Abstract
In Vehicular Ad Hoc Networks (VANETs), promoting cooperative behavior is a challenging problem for mechanism designers. Cooperative actions, such as disseminating data, can seem at odds with rationality and may benefit other vehicles at a cost to oneself. Without additional mechanisms, it is expected that cooperative behavior in the population will decrease and eventually disappear. Classical game theoretical models for cooperation, such as the public goods game, predict this outcome, but they assume fixed population sizes and overlook the ecological dynamics of the interacting vehicles. In this paper, we propose an evolutionary public goods game that incorporates VANET ecological dynamics and offers new insights for promoting cooperation. Our model considers free spaces, population density, departure rates of vehicles, and randomly composed groups for each data sender. Theoretical analysis and simulation results show that higher population densities and departure rates, due to minimum differences between pay-offs of vehicles, promote cooperative behavior. This feedback between ecological dynamics and evolutionary game dynamics leads to interesting results. Our proposed model demonstrates a new extension of evolutionary dynamics to vehicles of varying densities. We show that it is possible to promote cooperation in VANETs without the need for any supporting mechanisms. Future research can investigate the potential for using this model in practical settings.
Subject
General Medicine,General Chemistry