Affiliation:
1. Department of Computer Science, University of Sheffield, Sheffield S10 2TN, UK
2. Department of Computer Science, University of Manchester, Manchester M13 9PL, UK
Abstract
This paper investigates the impact of several hyperparameters on static malware detection using deep learning, including the number of epochs, batch size, number of layers and neurons, optimisation method, dropout rate, type of activation function, and learning rate. We employed the cAgen tool and grid search optimisation from the scikit-learn Python library to identify the best hyperparameters for our Keras deep learning model. Our experiments reveal that cAgen is more efficient than grid search in finding the optimal parameters, and we find that the selection of hyperparameter values has a significant impact on the model’s accuracy. Specifically, our approach leads to significant improvements in the neural network model’s accuracy for static malware detection on the Ember dataset (from 81.2% to 95.7%) and the Kaggle dataset (from 94% to 98.6%). These results demonstrate the effectiveness of our proposed approach, and have important implications for the field of static malware detection.
Funder
invitation to publish a paper from Telecom Journal
Subject
General Medicine,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing AI - Powered Malware Detection by Parallel Ensemble Learning;2023 RIVF International Conference on Computing and Communication Technologies (RIVF);2023-12-23