A Multifunctional Network with Uncertainty Estimation and Attention-Based Knowledge Distillation to Address Practical Challenges in Respiration Rate Estimation

Author:

Rathore Kapil Singh12,Vijayarangan Sricharan12,SP Preejith2ORCID,Sivaprakasam Mohanasankar12

Affiliation:

1. Indian Institute of Technology Madras, Chennai 6000001, India

2. Healthcare Technology Innovation Center, Chennai 6000001, India

Abstract

Respiration rate is a vital parameter to indicate good health, wellbeing, and performance. As the estimation through classical measurement modes are limited only to rest or during slow movements, respiration rate is commonly estimated through physiological signals such as electrocardiogram and photoplethysmography due to the unobtrusive nature of wearable devices. Deep learning methodologies have gained much traction in the recent past to enhance accuracy during activities involving a lot of movement. However, these methods pose challenges, including model interpretability, uncertainty estimation in the context of respiration rate estimation, and model compactness in terms of deployment in wearable platforms. In this direction, we propose a multifunctional framework, which includes the combination of an attention mechanism, an uncertainty estimation functionality, and a knowledge distillation framework. We evaluated the performance of our framework on two datasets containing ambulatory movement. The attention mechanism visually and quantitatively improved instantaneous respiration rate estimation. Using Monte Carlo dropouts to embed the network with inferential uncertainty estimation resulted in the rejection of 3.7% of windows with high uncertainty, which consequently resulted in an overall reduction of 7.99% in the mean absolute error. The attention-aware knowledge distillation mechanism reduced the model’s parameter count and inference time by 49.5% and 38.09%, respectively, without any increase in error rates. Through experimentation, ablation, and visualization, we demonstrated the efficacy of the proposed framework in addressing practical challenges, thus taking a step towards deployment in wearable edge devices.

Funder

IITM Pravartak Technologies Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3