Textual Feature Extraction Using Ant Colony Optimization for Hate Speech Classification

Author:

Gite Shilpa1,Patil Shruti1ORCID,Dharrao Deepak2ORCID,Yadav Madhuri1,Basak Sneha1,Rajendran Arundarasi1ORCID,Kotecha Ketan3ORCID

Affiliation:

1. Symbiosis Centre for Applied Artificial Intelligence, Department of Artificial Intelligence and Machine Learning, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India

2. Department of Computer Science and Engineering, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India

3. Symbiosis Centre for Applied Artificial Intelligence, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India

Abstract

Feature selection and feature extraction have always been of utmost importance owing to their capability to remove redundant and irrelevant features, reduce the vector space size, control the computational time, and improve performance for more accurate classification tasks, especially in text categorization. These feature engineering techniques can further be optimized using optimization algorithms. This paper proposes a similar framework by implementing one such optimization algorithm, Ant Colony Optimization (ACO), incorporating different feature selection and feature extraction techniques on textual and numerical datasets using four machine learning (ML) models: Logistic Regression (LR), K-Nearest Neighbor (KNN), Stochastic Gradient Descent (SGD), and Random Forest (RF). The aim is to show the difference in the results achieved on both datasets with the help of comparative analysis. The proposed feature selection and feature extraction techniques assist in enhancing the performance of the machine learning model. This research article considers numerical and text-based datasets for stroke prediction and detecting hate speech, respectively. The text dataset is prepared by extracting tweets consisting of positive, negative, and neutral sentiments from Twitter API. A maximum improvement in accuracy of 10.07% is observed for Random Forest with the TF-IDF feature extraction technique on the application of ACO. Besides, this study also highlights the limitations of text data that inhibit the performance of machine learning models, justifying the difference of almost 18.43% in accuracy compared to that of numerical data.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3