An Obstacle-Finding Approach for Autonomous Mobile Robots Using 2D LiDAR Data

Author:

Mochurad Lesia1ORCID,Hladun Yaroslav1,Tkachenko Roman2ORCID

Affiliation:

1. Department of Artificial Intelligence, Lviv Polytechnic National University, 79905 Lviv, Ukraine

2. Department of Publishing Information Technologies, Lviv Polytechnic National University, 79013 Lviv, Ukraine

Abstract

Obstacle detection is crucial for the navigation of autonomous mobile robots: it is necessary to ensure their presence as accurately as possible and find their position relative to the robot. Autonomous mobile robots for indoor navigation purposes use several special sensors for various tasks. One such study is localizing the robot in space. In most cases, the LiDAR sensor is employed to solve this problem. In addition, the data from this sensor are critical, as the sensor is directly related to the distance of objects and obstacles surrounding the robot, so LiDAR data can be used for detection. This article is devoted to developing an obstacle detection algorithm based on 2D LiDAR sensor data. We propose a parallelization method to speed up this algorithm while processing big data. The result is an algorithm that finds obstacles and objects with high accuracy and speed: it receives a set of points from the sensor and data about the robot’s movements. It outputs a set of line segments, where each group of such line segments describes an object. The two proposed metrics assessed accuracy, and both averages are high: 86% and 91% for the first and second metrics, respectively. The proposed method is flexible enough to optimize it for a specific configuration of the LiDAR sensor. Four hyperparameters are experimentally found for a given sensor configuration to maximize the correspondence between real and found objects. The work of the proposed algorithm has been carefully tested on simulated and actual data. The authors also investigated the relationship between the selected hyperparameters’ values and the algorithm’s efficiency. Potential applications, limitations, and opportunities for future research are discussed.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3