An Improved Link Prediction Approach for Directed Complex Networks Using Stochastic Block Modeling

Author:

Nair Lekshmi S.1ORCID,Jayaraman Swaminathan1ORCID,Krishna Nagam Sai Pavan1

Affiliation:

1. Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, India

Abstract

Link prediction finds the future or the missing links in a social–biological complex network such as a friendship network, citation network, or protein network. Current methods to link prediction follow the network properties, such as the node’s centrality, the number of edges, or the weights of the edges, among many others. As the properties of the networks vary, the link prediction methods also vary. These methods are inaccurate since they exploit limited information. This work presents a link prediction method based on the stochastic block model. The novelty of our approach is the three-step process to find the most-influential nodes using the m-PageRank metric, forming blocks using the global clustering coefficient and, finally, predicting the most-optimized links using maximum likelihood estimation. Through the experimental analysis of social, ecological, and biological datasets, we proved that the proposed model outperforms the existing state-of-the-art approaches to link prediction.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Reference50 articles.

1. Statistical mechanics of complex networks;Albert;Rev. Mod. Phys.,2002

2. Network science;Philos. Trans. R. Soc. Math. Phys. Eng. Sci.,2013

3. Newman, M.E., Barabási, A.L.E., and Watts, D.J. (2006). The Structure and Dynamics of Networks, Princeton University Press.

4. Complex networks: Structure and dynamics;Boccaletti;Phys. Rep.,2006

5. Multilayer networks;Arenas;J. Complex Netw.,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3