Gridded Visibility Products over Marine Environments Based on Artificial Neural Network Analysis

Author:

Shan YulongORCID,Zhang Ren,Gultepe IsmailORCID,Zhang Yaojia,Li Ming,Wang Yangjun

Abstract

The reconstruction and monitoring of visibility over marine environments is critically important because of a lack of observations. To travel safely in marine environments, a high quality of visibility data is needed to evaluate navigation risk. Currently, although visibility is available through numerical weather prediction models as well as ground and spaceborne remote sensing platforms and ship measurements, issues still exist over the remote marine environments and northern latitudes. To improve visibility prediction and reduce navigational risks, gridded visibility data based on artificial neural network analysis can be used over marine environments, and the problem can be regarded as an air quality prediction problem based on machine learning algorithms. This new method based on artificial intelligence techniques developed here is tested over the Indian Ocean. The mean error of the inferred visibility from the artificial neural network analysis is found to be less than 8.0%. The results suggested that satellite-based optical thickness and numerical model-based reanalysis data can be used to infer gridded visibility values based on artificial neural network analysis, and that could help us reconstruct and monitor surface gridded visibility values over marine and remote environments.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. Arctic sea ice decline: Faster than forecast

2. A Freezing Fog/Drizzle Event during the FRAM-S Project (No. 2011-38-0028);Gultepe,2011

3. Marine fog: A review on microphysics and visibility prediction;Gultepe,2017

4. Causes and Countermeasures of collision accidents of ships with poor visibility;Yanghan;China Water Transp.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3