Abstract
Variable compression ratio (VCR) technology has long been recognized as a method for improving the engine performance, efficiency, and fuel economy of automobiles, with reduced emissions. In this paper, a novel hydraulic continuous VCR system based on the principle of an adjustable hydraulic volume is introduced. The continuous variable compression ratio of the VCR system is realized by the hydraulic system controlling the rotation of the eccentric pin to change the positions of the top dead center (TDC) and the bottom dead center (BDC). The construction of the mathematical model and simulation model of the VCR system is also presented in this paper. The piston motion characteristics, flow characteristics, and pressure characteristics of the hydraulic system of the VCR system at different engine speeds and adjustment quantities are studied by simulation in this paper. The simulation results show that the VCR system has a fast response and good dynamic characteristics, and can achieve continuous adjustment of the compression ratio.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献