Abstract
We introduce the notion of a C k -diffeological statistical model, which allows us to apply the theory of diffeological spaces to (possibly singular) statistical models. In particular, we introduce a class of almost 2-integrable C k -diffeological statistical models that encompasses all known statistical models for which the Fisher metric is defined. This class contains a statistical model which does not appear in the Ay–Jost–Lê–Schwachhöfer theory of parametrized measure models. Then, we show that, for any positive integer k , the class of almost 2-integrable C k -diffeological statistical models is preserved under probabilistic mappings. Furthermore, the monotonicity theorem for the Fisher metric also holds for this class. As a consequence, the Fisher metric on an almost 2-integrable C k -diffeological statistical model P ⊂ P ( X ) is preserved under any probabilistic mapping T : X ⇝ Y that is sufficient w.r.t. P. Finally, we extend the Cramér–Rao inequality to the class of 2-integrable C k -diffeological statistical models.
Funder
Grant Agency of Czech Republic
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference29 articles.
1. What is a statistical model?
2. Statistical Decision Rules and Optimal Inference;Chentsov,1972
3. Differential-Geometric Methods in Statistics;Amari,1985
4. Information Geometry and Its Applications;Amari,2016
5. Information Geometry;Ay,2017
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献