Abstract
In this paper, we consider a discrete Sobolev inner product involving the Jacobi weight with a twofold objective. On the one hand, since the orthonormal polynomials with respect to this inner product are eigenfunctions of a certain differential operator, we are interested in the corresponding eigenvalues, more exactly, in their asymptotic behavior. Thus, we can determine a limit value which links this asymptotic behavior and the uniform norm of the orthonormal polynomials in a logarithmic scale. This value appears in the theory of reproducing kernel Hilbert spaces. On the other hand, we tackle a more general case than the one considered in the literature previously.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference37 articles.
1. Polynomial Least Square Approximations
2. Einfache verallgemeinerte klassische Orthogonalpolynome;Schäfke;J. Reine Angew. Math.,1973
3. Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation;Althammer;J. Reine Angew. Math.,1962
4. Orthogonale Polynomsysteme, die Gleichzeitig mit f(x) auch deren Ableitung f′(x) approximieren;Gröbner,1967
5. On Sobolev orthogonal polynomials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献