Respiratory Activity during Exercise: A Feasibility Study on Transition Point Estimation Using Impedance Pneumography

Author:

Młyńczak MarcelORCID,Krysztofiak HubertORCID

Abstract

The current diagnostic procedures for assessing physiological response to exercise comprise blood lactates measurements, ergospirometry, and electrocardiography. The first is not continuous, the second requires specialized equipment distorting natural breathing, and the last is indirect. Therefore, we decided to perform the feasibility study with impedance pneumography as an alternative technique. We attempted to determine points in respiratory-related signals, acquired during stress test conditions, that suggest a transition similar to the gas exchange threshold. In addition, we analyzed whether or not respiratory activity reaches steady states during graded exercise. Forty-four students (35 females), practicing sports on different levels, performed a graded exercise test until exhaustion on cycloergometer. Eventually, the results from 34 of them were used. The data were acquired with Pneumonitor 2. The signals demonstrated that the steady state phenomenon is not as evident as for heart rate. The results indicated respiratory rate approaches show the transition point at the earliest (more than 6 min before the end of the exercise test on average), and the tidal volume ones at the latest (less than 5 min). A combination gave intermediate findings. The results showed the impedance pneumography appears reasonable for the transition point estimation, but this should be further studied with the reference.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3