Acoustic Wave Propagation in Air-Filled Pipes Using Finite Element Analysis

Author:

Abdullahi Mustapha,Oyadiji S

Abstract

The major objective of this work is to develop an efficient Finite Element Analysis (FEA) procedure to simulate wave propagation in air-filled pipes accurately. The development of such a simulation technique is essential in the study of wave propagation in pipe networks such as oil and gas pipelines and urban water distribution networks. While numerical analysis using FEA seems superficially straight forward, this paper demonstrates that the element type and refinement used for acoustic FEA have a significant effect on the accuracy of the result achieved and the efficiency of the computation. In particular, it is shown that the well-known, better overall performance achieved with 3D solid hexahedral elements in comparison with 2D-type elements in most stress and thermal applications does not occur with acoustic analysis. In this paper, FEA models were developed taking into account the influence of element type and sizes using 2D-like and 3D element formulations, as well as linear and quadratic nodal interpolations. Different mesh sizes, ranging from large to very small acoustic wavelengths, were considered. The simulation scheme was verified using the Time of Flight approach to derive the predicted acoustic wave velocity which was compared with the true acoustic wave velocity, based on the input bulk modulus and density of air. For finite element sizes of the same order as acoustic wavelengths which correspond to acoustic frequencies between 1 kHz and 1 MHz, the errors associated with the predictions based on the 3D solid hexahedral acoustic elements were mostly greater than 15%. However, for the same element sizes, the errors associated with the predictions based on the 2D-like axisymmetric solid acoustic elements were mostly less than 2%. This indicates that the 2D-like axisymmetric solid acoustic elements are much more efficient than the 3D hexahedral acoustic elements in predicting acoustic wave propagation in air-filled pipes, as they give higher accuracies and are less computationally intensive. In most stress and thermal FEA, the 3D solid hexahedral elements are much more efficient than 2D-type elements. However, for acoustic FEA, the results show that 2D-like axisymmetric elements are much more efficient than 3D solid hexahedral elements.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3