Novel Transient Power Control Schemes for BTB VSCs to Improve Angle Stability

Author:

Song Sungyoon,Hwang Sungchul,Ko Baekkyeong,Cha Seungtae,Jang GilsooORCID

Abstract

This paper proposes two novel power control strategies to improve the angle stability of generators using a Back-to-Back (BTB) system-based voltage source converter (VSC). The proposed power control strategies have two communication systems: a bus angle monitoring system and a special protection system (SPS), respectively. The first power control strategy can emulate the behaviour of the ac transmission to improve the angle stability while supporting the ac voltage at the primary level of the control structure. The second power control scheme uses an SPS signal to contribute stability to the power system under severe contingencies involving the other generators. The results for the proposed control scheme were validated using the PSS/E software package with a sub-module written in the Python language, and the simple assistant power control with two communication systems is shown to improve the angle stability. In conclusion, BTB VSCs can contribute their power control strategies to ac grid in addition to offering several existing advantages, which makes them applicable for use in the commensurate protection of large ac grid.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference12 articles.

1. ATC’s Mackinac Back-to-Back HVDC Project: Planning and Operation Considerations for Michigan’s Eastern Upper and Northern Lower Peninsulas;Sankar,2013

2. The Analysis of Active Power Control Requirements in the Selected Grid Codes for Wind Farm

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3