Feature Selection and Transfer Learning for Alzheimer’s Disease Clinical Diagnosis

Author:

Zhou Ke,He Wenguang,Xu Yonghui,Xiong Gangqiang,Cai JieORCID

Abstract

Background and Purpose: A majority studies on diagnosis of Alzheimer’s Disease (AD) are based on an assumption: the training and testing data are drawn from the same distribution. However, in the diagnosis of AD and mild cognitive impairment (MCI), this identical-distribution assumption may not hold. To solve this problem, we utilize the transfer learning method into the diagnosis of AD. Methods: The MR (Magnetic Resonance) images were segmented using spm-Dartel toolbox and registrated with Automatic Anatomical Labeling (AAL) atlas, then the gray matter (GM) tissue volume of the anatomical region were computed as characteristic parameter. The information gain was introduced for feature selection. The TrAdaboost algorithm was used to classify AD, MCI, and normal controls (NC) data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, meanwhile, the “knowledge” learned from ADNI was transferred to AD samples from local hospital. The classification accuracy, sensitivity and specificity were calculated and compared with four classical algorithms. Results: In the experiment of transfer task: AD to MCI, 177 AD and 40NC subjects were grouped as training data; 245 MCI and 45 remaining NC subjects were combined as testing data, the highest accuracy achieved 85.4%, higher than the other four classical algorithms. Meanwhile, feature selection that is based on information gain reduced the features from 90 to 7, controlled the redundancy efficiently. In the experiment of transfer task: ADNI to local hospital data, the highest accuracy achieved 93.7%, and the specificity achieved 100%. Conclusions: The experimental results showed that our algorithm has a clear advantage over classic classification methods with higher accuracy and less fluctuation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Alzheimer’s Disease Detection with Chaotic Moth Flame Optimization Algorithm: A Feature Selection Approach;2024 International Conference on Emerging Technologies in Computer Science for Interdisciplinary Applications (ICETCS);2024-04-22

2. Advancements in computer-assisted diagnosis of Alzheimer's disease: A comprehensive survey of neuroimaging methods and AI techniques for early detection;Ageing Research Reviews;2023-11

3. A Review on Alzheimer’s Disease Detection using Machine Learning;2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2023-08-23

4. Study of Alzheimer’s disease brain impairment and methods for its early diagnosis: a comprehensive survey;International Journal of Multimedia Information Retrieval;2023-03-17

5. Machine learning for automatic Alzheimer’s disease detection: addressing domain shift issues for building robust models;Radiology Science;2023-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3