Author:
Chen Yunfei,Li Sheng,Jia Bing,Li Guijuan,Wang Zhenshan
Abstract
Discriminating a real underwater target echo from a synthetic echo is a key challenge to identifying an underwater target. The structure of an echo envelope contains information which closely relates to the physical parameters of the underwater target, and the characterization and extraction of echo features are problematic issues for active sonar target classification. In this study, firstly, the high-frequency envelope fluctuation of a complex underwater target echo was analyzed, the envelope fluctuation was characterized by the envelope fluctuation intensity, and a characterization model was established. The features of a benchmark model echo were extracted and analyzed by theoretical simulation and sea testing of a scaled model, and the result shows that the envelope fluctuation intensity varies with carrier frequency and azimuth of incident signal, but the echo envelope fluctuation of the synthetic target echo does not present these features. Then, based on the characteristics of echo envelope fluctuation, a novel method was developed for active sonar discrimination of a real underwater target echo from the synthetic echo. Through a sea experiment, the real target echo and synthetic echo were classified by their different echo envelope fluctuations, and the feasibility of the method was verified.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献