Cartilage Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells in Three-Dimensional Silica Nonwoven Fabrics

Author:

Ishikawa Shohei,Iijima Kazutoshi,Sasaki Kohei,Hashizume Mineo,Kawabe Masaaki,Otsuka Hidenori

Abstract

In cartilage tissue engineering, three-dimensional (3D) scaffolds provide native extracellular matrix (ECM) environments that induce tissue ingrowth and ECM deposition for in vitro and in vivo tissue regeneration. In this report, we investigated 3D silica nonwoven fabrics (Cellbed®) as a scaffold for mesenchymal stem cells (MSCs) in cartilage tissue engineering applications. The unique, highly porous microstructure of 3D silica fabrics allows for immediate cell infiltration for tissue repair and orientation of cell–cell interaction. It is expected that the morphological similarity of silica fibers to that of fibrillar ECM contributes to the functionalization of cells. Human bone marrow-derived MSCs were cultured in 3D silica fabrics, and chondrogenic differentiation was induced by culture in chondrogenic differentiation medium. The characteristics of chondrogenic differentiation including cellular growth, ECM deposition of glycosaminoglycan and collagen, and gene expression were evaluated. Because of the highly interconnected network structure, stiffness, and permeability of the 3D silica fabrics, the level of chondrogenesis observed in MSCs seeded within was comparable to that observed in MSCs maintained on atelocollagen gels, which are widely used to study the chondrogenesis of MSCs in vitro and in vivo. These results indicated that 3D silica nonwoven fabrics are a promising scaffold for the regeneration of articular cartilage defects using MSCs, showing the particular importance of high elasticity.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3