Hybrid Prediction Model for Type 2 Diabetes and Hypertension Using DBSCAN-Based Outlier Detection, Synthetic Minority Over Sampling Technique (SMOTE), and Random Forest

Author:

Ijaz Muhammad,Alfian Ganjar,Syafrudin MuhammadORCID,Rhee Jongtae

Abstract

As the risk of diseases diabetes and hypertension increases, machine learning algorithms are being utilized to improve early stage diagnosis. This study proposes a Hybrid Prediction Model (HPM), which can provide early prediction of type 2 diabetes (T2D) and hypertension based on input risk-factors from individuals. The proposed HPM consists of Density-based Spatial Clustering of Applications with Noise (DBSCAN)-based outlier detection to remove the outlier data, Synthetic Minority Over-Sampling Technique (SMOTE) to balance the distribution of class, and Random Forest (RF) to classify the diseases. Three benchmark datasets were utilized to predict the risk of diabetes and hypertension at the initial stage. The result showed that by integrating DBSCAN-based outlier detection, SMOTE, and RF, diabetes and hypertension could be successfully predicted. The proposed HPM provided the best performance result as compared to other models for predicting diabetes as well as hypertension. Furthermore, our study has demonstrated that the proposed HPM can be applied in real cases in the IoT-based Health-care Monitoring System, so that the input risk-factors from end-user android application can be stored and analyzed in a secure remote server. The prediction result from the proposed HPM can be accessed by users through an Android application; thus, it is expected to provide an effective way to find the risk of diabetes and hypertension at the initial stage.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference68 articles.

1. Definition, Diagnosis, and Classification of Diabetes Mellitus and Its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus,1999

2. Standards of medical care in diabetes—2006;Diabetes Care,2006

3. Calibration of Minimally Invasive Continuous Glucose Monitoring Sensors: State-of-The-Art and Current Perspectives

4. Is Type 2 Diabetes an Operable Intestinal Disease?

5. Diabetes mellitus and stroke: A clinical update

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3