A Television Recommender System Learning a User’s Time-Aware Watching Patterns Using Quadratic Programming

Author:

Kim Noo-ri,Oh Sungtak,Lee Jee-Hyong

Abstract

In this paper, a novel television (TV) program recommendation method is proposed by merging multiple preferences. We use channels and genres of programs, which is available information in standalone TVs, as features for the recommendation. The proposed method performs multi-time contextual profiling and constructs multiple-time contextual preference matrices of channels and genres. Since multiple preference models are constructed with different time contexts, there can be conflicts among them. In order to effectively merge the preferences with the minimum number of conflicts, we develop a quadratic programming model. The optimization problem is formulated with a minimum number of constraints so that the optimization process is scalable and fast even in a standalone TV with low computational power. Experiments with a real-world dataset prove that the proposed method is more efficient and accurate than other TV recommendation methods. Our method improves recommendation performance by 5–50% compared to the baselines.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. The use of machine learning algorithms in recommender systems: A systematic review

2. iEPG

3. A Hybrid Recommender System Based on AHP That Awares Contexts with Bayesian Networks for Smart TV;Quan,2014

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3