Comparative Life Cycle Assessment of End-of-Life Silicon Solar Photovoltaic Modules

Author:

Lunardi Marina,Alvarez-Gaitan J.,Bilbao J.,Corkish RichardORCID

Abstract

The cumulative global photovoltaic (PV) waste reached 250,000 metric tonnes by the end of 2016 and is expected to increase considerably in the future. Hence, adequate end-of-life (EoL) management for PV modules must be developed. Today, most of the EoL modules go to landfill, mainly because recycling processes for PV modules are not yet economically feasible and regulation in most countries is not yet well established. Nevertheless, several methods for recycling PV modules are under development. Life cycle assessment (LCA) is a methodology that quantifies the environmental impacts of a process or a product. An attributional LCA was undertaken to compare landfill, incineration, reuse and recycling (mechanical, thermal and chemical routes) of EoL crystalline silicon (c-Si) solar modules, based on a combination of real process data and assumptions. The results show that recovery of materials from solar modules results in lower environmental impacts compared to other EoL scenarios, considering our assumptions. The impacts could be even lower with the adoption of more complex processes that can reclaim more materials. Although recycling processes can achieve good recycling rates and recover almost all materials from solar modules, attention must be paid to the use of toxic substances during the chemical routes of recycling and to the distance to recycling centres due to the impacts of transportation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Global Solar Capacity Set to Surpass Nuclear for the First Time, Greentech Mediahttps://www.greentechmedia.com/articles/read/global-solar-capacity-set-to-surpass-global-nuclear-capacity

2. Recycling of photovoltaic panels by physical operations

3. Study on Photovoltaic Panels Supplementing the Impact Assessment for a Recast of the WEEE Directive, Final Report;Monier,2011

4. Life Cycle Inventories and Life Cycle Assessment of Photovoltaic Systems;Frischknecht,2015

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3